Число Пи

Главная » Математика » Число Пи

Число ПиМатематики, празднующие свой день рождения 14 марта, с некоторых пор получили дополнительный повод для торжества: именно этот день (который, исходя из американской традиции, записывается, как 3.14) объявлен Международным днем числа Пи — математической постоянной, выражающей соотношение длины окружности и длины ее диаметра: 3, 14159265358979323846 2643383279...

Проблема отношения длины окружности к ее диаметру возникла очень давно (по легенде, именно недостаточная точность этого числа стала причиной того, что Вавилонская башня так и не была построена) и долгое время древние ученые пользовались числом, равным трем. Однако первым, кто использовал средства математики для получения числа этого соотношения, был Архимед, который, занимаясь окружностями и многоугольниками, предположил, что «отношение любой окружности к ее диаметру меньше 3 1/7 и больше 3 10/71», получив, таким образом, число 3,1419...

Кстати, настоящие фанаты этого числа (а есть и такие!) отмечают свой праздник ровно в 1 час 59 минут и 26 секунд — по минимальному количеству цифр этого числа: 3,1415926...

Индийские ученые обнаружили несколько иное значение — 3,162..., а арабскому математику и астроному Масуду ал-Каши удалось вычислить 16 абсолютно точных цифр числа пи, благодаря чему был произведен переворот в астрономии. К слову, пресловутое соотношение длины окружности и ее диаметра получило всем известный современный символ пи с легкой руки английского математика У. Джонсона только в 1706 году. Это обозначение — своеобразная аббревиатура букв, с которых начинаются греческие слова «окружность» и «периметр». В XYII веке немецкий математик Лудольф Ван Цейлен, опираясь на метод Архимеда, в течение десяти лет пытался получить число пи до тридцать второго знака после запятой, и его упорство было вознаграждено тем, что число пи с этим количеством десятичных знаков называют «числом Лудольфа».

Благодаря этому легендарному числу был завершен один из самых длительных математических споров: получено доказательство невозможности решения самой известной классической задачи о квадратуре круга. Математики А. Лажандр и Ф.Линдеман получили подтверждение иррациональности (невозможности быть представленным в виде дроби, числитель которой — целое, а знаменатель — натуральное число) и трансцендентности (невычислимости с помощью простых уравнений) числа пи, из чего следует, что никому не под силу с помощью только лишь циркуля и линейки построить отрезок, длина которого была бы равна длине заданной окружности.

Усовершенствование математических методов позволило ученым позднего времени с еще большей точностью вычислить число пи. Эйлер, благодаря которому название этого числа стало общеупотребительным, «нашел» 153 верных десятичных знака, Шенкс — 527 и пр. Что говорить о современных математиках, которые с помощью компьютера легко вычислили сто миллиардов знаков после запятой! Японские ученые, получив число пи с точностью до 12411-триллионного знака, сразу же оказались в Книге рекордов Гиннеса: для того, чтобы установить этот рекорд им понадобился не только супермощный компьютер, но и 400 часов времени! Поскольку число пи — бесконечная математическая продолжительность, у каждого математика есть шанс побить японский рекорд.

Одной из особенностей числа пи является то, что числа в его десятичной части (следующей после запятой) не повторяются, что, по утверждению некоторых ученых, является свидетельством того, что число пи — это разумный (!) хаос, записанный цифрами. В результате этого любая последовательность цифр, которая только может возникнуть в нашей голове, может быть найдена в цифрах десятичной части числа пи.

Если кто-то думает, что вычисление бесконечных десятичных знаков этого числа — особое развлечение по-хорошему «сумасшедших» математиков, тот ошибается: от точности числа пи зависит точность не только земного, но и космического строительства.

Поделиться


© copyright 2012 - 2016 Детская энциклопедия. Все о человеке, нашей планете, истории.