Нервный импульс

Нейроны производят электрохимические возмущения, перемещающиеся по их волокнам. Эти возмущения, именуемые нервными импульсами или потенциалами действия, генерируются малыми электрическими токами вдоль мембраны нервной клетки. Нейроны способны производить до тысячи потенциалов действия в секунду, в последовательности и длительности которых закодирована информация.

Нервные импульсы — электрохимические возмущения, передаваемые вдоль нервных волокон; через них нейроны взаимодействуют друг с другом и с остальным телом. Электрическая природа нервных импульсов задается структурой клеточной мембраны, которая состоит из двух слоев, разделенных небольшим зазором. Мембрана действует и как конденсатор — накапливает электрический заряд, собирая на себе ионы, и как сопротивление, блокируя ток. У нейрона в покое вдоль внутренней поверхности мембраны образуется облако отрицательно заряженных ионов, а вдоль внешней — положительных.

Нейрон, активируясь, испускает (также говорят «генерирует») нервный импульс. Он возникает в ответ на сигналы, полученные от других клеток, и являет собой краткое обратное изменение разности потенциалов мембраны: внутри она становится на мгновение положительно заряженной, после чего быстро возвращается к состоянию покоя. Во время нервного импульса мембрана нервной клетки пропускает внутрь ионы определенных видов. Поскольку ионы электрически заряжены, их движение есть электрический ток сквозь мембрану.

Нейрон
Нейрон
Нейрон с миелинизированным аксоном

Нейроны в покое Внутри нейронов находятся ионы, но и сами нейроны окружены ионами в других концентрациях. Частицам свойственно двигаться из области с высокой концентрацией в область с низкой, однако мембрана нервной клетки препятствует этому движению, поскольку в основном непроницаема.

Получается, что одни ионы концентрируются снаружи мембраны, а другие — внутри. В результате внешняя поверхность мембраны заряжена положительно, а внутренняя — отрицательно. Мембрана, таким образом, оказывается поляризована.

Все началось с кальмара Механизм потенциала действия — волны возбуждения на мембране клетки — выяснили в начале 1950-х, в классическом эксперименте с микроэлектродами, введенными в аксоны гигантского кальмара. Эти эксперименты доказали, что потенциал действия генерируется последовательными перемещениями ионов сквозь мембрану.

В первой фазе потенциала действия мембрана ненадолго становится проницаемой для ионов натрия, и они заполняют клетку. Это вызывает деполяризацию клетки — разность потенциалов на мембране меняется на обратную, и внутренняя поверхность мембраны заряжается положительно.

Вслед за этим клетку стремительно покидают ионы калия и разность потенциалов мембраны возвращается к исходному состоянию. Проникновение ионов калия внутрь делает заряд на мембране более отрицательным, нежели в состоянии покоя, и клетка, таким образом, оказывается гиперполяризована. В так называемый рефрактерный период нейрон не может произвести следующий потенциал действия, однако быстро возвращается к состоянию покоя.

Потенциалы действия генерируются в структуре, называемой аксонным холмиком, — это место, где аксон растет из клеточного тела. Потенциалы действия перемещаются вдоль аксона, потому что деполяризация одного сегмента волокна вызывает деполяризацию и соседнего. Эта волна деполяризации катится в направлении от клеточного тела и, достигнув терминали нервной клетки, вызывает выброс нейромедиаторов.

Одиночный импульс длится одну тысячную секунды; нейроны кодируют информацию точно выверенной по времени последовательностью импульсов (спайковых разрядов), однако до сих пор неясно, как именно кодируется информация. Нейроны часто производят потенциалы действия в ответ на сигналы от других клеток, однако порождают и импульсы без всяких внешних сигналов. Частота базальных пульсаций, или спонтанных потенциалов действия, варьирует у разных типов нейронов и может меняться в зависимости от сигналов других клеток.

«Мембрана действует как барьер и препятствует смешиванию ионов из внешнего и внутреннего растворов» Алан Ходжкин (1914-1998), английский нейрофизиолог, биофизик

Пройдут немногие

Ионы проникают через мембрану нервной клетки по белкам, имеющим форму бочки и именуемым ионными каналами. Они пронизывают мембрану и образуют сквозные поры. В ионных каналах есть сенсоры, распознающие изменения в разности потенциалов мембраны, они открываются и закрываются в ответ на эти изменения. Нейроны человека содержат более десятка разных видов таких каналов, и каждый из них пропускает лишь один вид ионов. Активность всех этих ионных каналов во время потенциала действия строго регламентирована. Они открываются и закрываются в определенном порядке — так, что нейроны в ответ на сигналы, получаемые от других клеток, могут генерировать последовательности нервных импульсов.

Закон Ома

Закон Ома объясняет, как электрические свойства мозга меняются в зависимости от входящих сигналов. Он описывает соотношение между разностью потенциалов (напряжением) мембраны нервной клетки, ее сопротивлением и током, протекающим сквозь нее. Согласно этому соотношению ток прямо пропорционален напряжению на мембране и описывается уравнением I = U/R, где I — электрический ток, U — разность потенциалов, а R — сопротивление.

Закон Ома

Быстрее Усэйна Болта

Аксоны спинного и головного мозга изолированы толстой миелиновой тканью, производимой клетками мозга олигодендроцитами. У олигодендроцита ответвлений немного, и каждое состоит из крупного плоского полотна миелина, многократно обернутого вокруг маленького сегмента аксона, принадлежащего другому нейрону. Миелиновая оболочка вдоль длины всего аксона неравномерна: она прерывается с регулярными интервалами, и точки этих прерываний именуются перехватами Ранвье. Ионные каналы сгущаются как раз в этих точках, тем самым обеспечивая перескакивание потенциалов действия с одного перехвата на другой. Так ускоряется весь процесс движения потенциалов действия вдоль аксона — оно происходит со скоростью до 100 м/сек.




Поделиться ссылкой