Дружественные числа?! Шутка исследователей? Что за странное название для математического термина? На самом деле, это название дано не с проста.
Дружественные числа — это два натуральных числа, для которых сумма всех делителей первого числа (кроме него самого) равна второму числу и, в свою очередь, сумма всех делителей второго числа (кроме него самого) равна первому числу. Всегда, когда говорят о дружественных числах, то имеют в виду пары числе. Таким образом, эти числа связаны отношениями сходства и поэтому были названы дружественными.
Впервые дружественные числа упоминаются в работах Пифагора, посвященных теории чисел. Следует отметить, что пифагорейцам была известна лишь одна пара дружественных чисел 220 и 284. Долгое время эта пара чисел была единственным представителем класса дружественных чисел.
В восемнадцатом веке Леонардо Эйлер нашёл ещё 65 пар дружественных чисел. К примеру одна из них, 17296 и 18416.
Однако, до сих пор общий способ нахождения пар дружественных чисел не был найден.
В 850 году нашей эры арабский астроном и математик Сабит ибн Курра предложил формулу, с помощью которой можно определить 3 пары дружественных чисел. Формула Сабит ибн Курра выглядит следующим образом:
Если:
p = 3 × 2n-1 - 1,, где n > 1 — натуральное число, а p,q,r — простые числа, то:
2npq и 2nr — пара дружественных чисел.
Благодаря этой формуле были найдены пары дружественных чисел 220 и 284, 17296 и 18416 и 9363584 и 9437056 соответственно для n=2,4,7. Но для n < 20000 больше никаких пар дружественных чисел нет.
Согласно официальным данным, на ноябрь 2006 известно 11 446 960 пар дружественых чисел, которые состоят из двух чётных или двух нечётных чисел. О том существует ли чётно-нечётная пара дружественных чисел науке до сих пор неизвестно. Кроме того, по-прежнему невыясненным остается предположение о существовании взаимно простых дружественных числа. В том случае, если такая пара дружественных чисел все же существует, то их произведение должно быть больше 1067.
Для наглядности приведем все пары дружественных чисел, значение которых меньше 100 000: