Жерар Дезарг

Иногда достаточно одной встречи, чтобы жизнь человека кардинально изменилась. Ярким доказательством этого служит пример Жерара Дезарга — известного французского геометра.

Жерар Дезарг

Жерар Дезарг

Молодой человек из аристократической семьи только что начавший военную карьеру, при осаде Ла-Рошели встречает выдающегося математика Франции Рене Декарта. Между ними завязалась крепкая дружба. Жерар Дезарг покидает ряды французской армии и решает всецело посвятить себя науке. Переехав в Париж Дезарг вступает в научное общество Шатеро-Лефевра. Именно там Дезарг знакомится с другими знаменитыми математиками такими, как Гассенди, Бульо, Роберваля, Паскаля и др. Постепенно Жерар Дезарг накапливает научные знания и опыт.

В 1636 году Дезарг публикует свое научное сочинение под названием «Общий метод изображения предметов в перспективе», в котором впервые был применен метод координат Декарта для построения перспективы. Научный труд Дезарга положил начало новому аксонометрическому методу в начертательной геометрии.

В сочинении «Общий метод изображения предметов в перспективе» Дезарг сформулировал основную теорему проективной геометрии. Теорема была сформулирована Дезаргом следующим образом:

Если два треугольника расположены на плоскости таким образом, что прямые, соединяющие соответственные вершины треугольников, проходят через одну точку, то три точки, в которых пересекаются продолжения трёх пар соответственных сторон треугольников, лежат на одной прямой.

Доказательство теоремы Дезарга основывается на переходе в трехмерное пространство. Таким образом, предметы рассматриваются как проекции на плоскость пространственной структуры.

В теореме Дезарга точки и прямые формируют своеобразную конфигурацию Дезарга. В конфигурации Дезарга через каждые 10 точек проходят 3 прямые, а на каждой из 10 прямых лежат 3 точки. Важно, что при этом любая из 10 точек может быть взята за «вершину трёхгранной пирамиды».

Благодаря научным изысканиям математика, инженера и архитектора Жерара Дезарга были заложены основы современной начертательной и проективной геометрии.




Поделиться ссылкой